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FOREWORD

This report summarizes sand and rain erosion studies of spinel, aluminum
oxynitride (ALON), polycrystalline magnesium fluoride, and a germanate glass. The
purpose of this study was to evaluate alternative materials to magnesium fluoride for
infrared-transparent domes for missiles.

This work was carried out in the Optical and Electronic Materials Branch of the
Chemistry Division of the Research Departraent. Portions of this work were done by
Linda F. Johnson, Kar! Klemm, Phil Archibald, and David A. O'Connor. The report
wa§ reviewed for technical accuracy by William Haight, Linda F. Johnson, and Donald
L. Jones.
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The following noticc applies to any unclassified (including originally classified
and now declassified) technical reports released to "qualified U.S. contractors"
under the provisions of DoD Directive 5230.25, Withholding of Unclassified
Technical Data From Public Disclosure.

NOTICE TO ACCOMPANY THE DISSEMINATION OF EXPORT-CONTROLLED TECHNICAL DATA

1, Export of information contained herein, which includes, in some
circumgstances, release to foreign nationals within the United States, without
first obtaining approval or license from the Department of State for items
controlled by the International Traffic in Arms Regulations (ITAR), or the
Department of Commerce for items controlled by the Export Administration
Regulations (EAR), may constitute & violation of law.

2, Under 22 U,8.C. 2778 the penalty for unlawful export of items or information
controlled under the ITAR is up to two years imprisonment, or a fine of $100,000,
or both. Under 50 U,S.C., Appendix 2410, the penalty for unlawful export of
items or information controlled under the EAR is a fine of up to $1,000,000, or
five times the value of the exports, whichever is greater; or for an individual,
imprisonment of up to 10 years, or a fine bf up to $250,000, or both.

3. 1In accordance with your certification that establishes you as a "qualified
U.8, Contractor", unauthorized dissemination of this information is prohibited
and may result in disqualification as a qualified U.S. contractor, and may be
condidered in determining your eligibility for future contracts with the
Department of Defense.

4, The U.S, Government assumes uo liability for direct patent iafringemeat, or
contributory patent infringement or misuse of technical data.

5. The U.S. Government does not warrant the adequacy, accuracy, curreucy, or
completeness of the technical data.

§, The U.S. Government assumes no lisbility for loss, damege, or injury
resulting from manufacture or use for any purpose of eny product, article,
eystem, or matetial fnvolving reliance upon any or all technical dats furnished
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7. 1f the technical data furnished by the Government will be used for commercial
manufacturing or other profit potential, a license for such use may be necessary.
Any paycents made in support of the request for data dc aot include or involve
any license rights.

8. A copy of this notice shall be provided with any partial or complete
reproduction of these data that ave provided to qualified U.8. contractors.
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For classified documents, follow the procedures in DoD 5200,22-M, lIndustrial
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document.
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SUMMARY AND RECOMMENDATIONS

Tests were conducted to evaluate alternate materials to magnesium fluoride (MgF2) for
midwave (3 to 5 micrometer (Um)) infrared (IR)-u'ansmittinf missile domes. Comparative
sand and rain erosion experiments were performed with polycrystalline MgF2, aluminum
oxynitride (ALON), spinel, and Corning 9754 germanate glass. Materials were tested
without coatings and with two different commercially available antireflection coatings.
Coating O is silica-based, and coating D is fluoride-based without thorium. MgF2 was
uncoated in all experiments.

MgF2 and spinel transmit adequately through the entire 3- to 5-Um region, while
ALON has significant absorption between 4 and 5 pm. Germanate glass absorbs near
3pm and is similar to spinel near 5 pm, Antireflection coating D improved the
transmittance by ~5% throughout the 3- to 5-jim range when applied to one surface of
ALON, spinel, or germanate glass. Coating O had a narrower antireflection bandwidth and
is not adequate for a 3- to S-um secker. MgF2 scatters ~1% of incident light at a
wavelength of 3.39 um. Spinel samples scattered ~0.5%, and ALON scattered 1 to 3%.
Coming 9754 glass scattered just 0.2% of incident radiation. Antireflection coatings had
no significant effect on IR scatter.

Saud erosion tests were carried out under conditions simulating aircraft takeoff and
landing (149- to 177-pm-diameter particles at 77 meters per second (m/s)) and aircraft
cruising (<38-pm-diameter particles at 206 ny/s) environmants, with a 90-degree angle of
incidence. (Coming 9754 glass was not included in tiicse tasts.) Uncoated ALON and
spine! exhibited no loss of midwave IR transmission up to highest sand loads tosted
(300 milligrams per square centimeter (mg/om®). However, microscopic oxamination
showed some pltting, with more danage to ALON than to spinel. MgF2 had significant
loss of transmission and was extensively pitied. Both antireflection coatings on ALON and
spinel delaminated locally at sand impact sites.

Rain erosion experiments carried out at the Wright-Patterson/University of Dayton
Research Institute, Ohio, whirling arm facility used 2-millimeter (mm)-diameter water
drops at a 25.4 wum/h rainfall rate with an incident speed of 210 meters per secona (vs) at
a 90-degree impact angle. Uncoated ALON was the most durable material, with litde
damage after 10 minutes of exposure, MgF2 and uncoated spinel both suffered slight
damage but could not be distinguished from each other with the limited exposure received
in this experiment, (One of the iwo MgF2 disks broke during the test. However, since the
MgF2 was only 3.4 ram thick, while the spine! was 5.1 mm thick, no conclusions were
drawn from this observation.) Antireflection coatings suffered localized delamination at
impact sites. Uncoated and coated Coming 9754 glass was extensively damaged, with no
coaling dolamination evideat.

Recommendations resulting from this study follow:

1. Spinel and ALON are durable alternatives to MgF2 for midwave IR missils
domes.
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2. ‘The optical performance of spinel in the 3- to 5-pm region is similar to that of
Mgl"2, while ALON has a reduced transmission window. At high speeds, ALON
cannot be used because it will have too much midwave IR emission. Further optical
analysis is required to estimate the upper useful speed and temperature for ALON.

3. Spinel and ALON are greatly superior to MgF} in resisting sand erosion.
Neither spinel nor ALON show any loss of transmission under the most severe
conditions tested. However, spinel showed slightly less impact damage than ALON
under microspcopic examination. ALON is greatly superior to MgF?2 in resisting rain
erosion. With the limited extent of the present experiments, the rain erosion resistance
of spinel could not be distinguished from that of MgF2.

4. Typical commercial antireflection coatings that are currently available should
not be used on the outer surfaces of spinel or ALON because the coatings are easily
eroded by sand and rain. (Current work on more durable coatings for ALON and
spinel could allow external antireflection coatings in the future.)

5. Antireflection coating D is recommended for the inside surface of a dome.
Thermal shock testing is necessary to verify that the coating does not delaminate.

6. Corning 9754 germanate glass, with or without antireflection coatings, is too
casily eroded to be & ssrious candidate for a missile dome.

INTRODUCTION

The purpose of this study is to cvaluate the crosion resistance of commercially
available midwave (3 to 5 um) IR-transmitting materials that are candidates 1o replace
MgF3 in missile domes (References 1, 2, and 3). One of the deficiencies of MgF2 is that it
is eroded by impact with rain and dust during captive carry under the wing of an aircraft.
For example, Sidewirder missiles deployed in the Persian Gulf War suffered severe sand
erosion.

In this work we sought to compare the performance of different dome materials in
side-by-side sand and rain crosion tests with MgF2. The materials tested were aluminum
oxynitride (ALON), spinel, and Coming 9754 germanate glass. Each specimen was tested
in bare form with two different commercial antireflection coatings. MgF2 was not coated
because it is not used with a coating. This report describes optical characteristics of the
uncoated and coated samples and reports the results of crosion tests,
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MATERIALS

All samples were disks with a diameter of 22.2 mm. Some specimens were coated on
one side with a 3- to S-um antireflection coating. Coating O is a multilayer silica-based
coating, while coating D is a fluoride-based material not containing thorium.

Magnesium fluoride (MgF2) was obtained by core drilling of Bausch and Lomb,
Rochester, N.Y., production-quality, hot-pressed, polycrystalline MgF2 domes fabricated
from MgF7 powder produced by Mallinckrodt Chemical Co., St. Louis, Mo. Flat disks
with a thickness of 3.4 mm were machined and polished from tie cores. The surfaces
were generally smooth but had obvious polishing streaks that were millimeters or
centimeters in length and visible to the naked eye.

ALON (aiuminum ox, .tride, 9A1303-SAIN) is a polycrystailine, optically polished
material with a thickness of 5.1 mm and was purchased from Raytheon Research Division,
Lexington, Mass. (Reference 4).

Spinel (magnesium aluminum oxide, MgAl204) is a polycrystalline, optically
polished material with a thickness of 5.1 mm and was purchased from Alpha Optical
Systems, Ocean Springs, Miss. (Reference 5).

Corning 9754 germanate glass was obtained as optically polished matsrial with a
thickness of 4.4 mm from Corning Glass Works, Coming, N.Y. (Reference 6).

GFYICAL CHARACTERISTICS

Figure | compares the iR irarsmission specira of uncoated ALON, spinel, and MgF2.
The wavelength of th: IR cutoff increases in the order ALON<spinel<MgF2. The
transmittance in the flat “window" reglon of each material is limited by Fresnel reflection
(Table 1). The sharp absorption spike near 3 pum in the spectram of MgF2 is attributed to
OH- impurity.

Figures 2 through 4 show the IR transmission of antireflection-coated samples.
The maximum theoretical transinittance of a sample coated on one side will be halfway
between that of the uncoated material and 100%. Coating D gives good broadband
performance on all three maierials. Coating O has a narrower effective bandwidth and did
not increase the wansmittance of spincl; in this case, we suspect that the coating was
misapplied.
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FIGURE . IR Transmission Spectra of Uncoated ALON, Spinel, and
Mgi3. ALON and sping! are 5.1 mm thick, while MgF; is 3.4 mm thick.

TABLE §. Refmctive Indox and Thearetical Transmission.

Muerials | Refractive indox nea 4 pund Theocetical transmivanced
MgFa 135 0.95
Spinol 1.66 0.88
ALON 172 087

¥ Das obealaed from Refereacn 7. -

5Mm-2n}(uzd).Mun:dnﬁum
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FIGURE 2. IR Transmission Spectra of Uncoaled and Antireflection-coaled
Cuorning 9754 Germanalo Glass With a Thickness of 44 mm.
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IR and visible optical scatter are shown in Table 2. The most important number is the
total integrated scatter in the forward hemisphere at 3.39 um waveleugth, because this is
representative of the optical scatter in a midwave IR seeker. New, production-quality
MgF2 domes scatter ~1% of midwave IR light (as measured in 1978) (Reference 8). The
scatter is increased in domes that have been in service. Spinel samples in the current work
scatter ~0.5%, ALON samples scatter ~2%, and Corning 9754 germanate glass scatters
~0.2%. In the past, we have measured IR scatter at 3.39 pm as low as 0.1% on Alpha
Optical spinel and as low as 0.05% on Raytheon ALON. Table 2 shows that neither y
antireflection coating changes the scatter to a significant extent.

TABLE 2. Total Integrated Scatter.

Scatter at 3.39 um, %4
Malerial Forward hemisphere Back hemisphere | Scatter at 0.63 pm, %2
MgF?, polycrystalline 1.3t 02¢
MgF2, single crystald 0.001-0.002
MgFs, mosaic crystald 0.001-0.002
Spincl, S1, uncoated 0.53 £ 0.02 0.073 £ 0.005 34
Spinel, S1, coating O 0.59 £ 0.02
Spinel, 82, uncoated 0.39 + 0.06 0.034 £ 0.009
Spinel, §2, coating O 0.32 £ 0.03
Spinel, $3, uncoated 0.44 £ 0.05 0.057 £ 0.004
Spinel, §3, coating D 0.52 £ 0.03
Spinel, 84, uncoated 0.33 1 0.02 0,030 £ 0.003 35
Spinel, 84, ccaling D 0.35 £ 0.04
ALON, Al, uncoated 26101 0.29 £ 0.01 4.1
ALON. Al, voating O 28101
ALON, A2, uncoated 1901 0.22 £ 0.02
ALON, A2, coating O 2.0 201
ALON, A3, uncoatid 310201 0.31 £ 0.01
ALON, A3, coating D 35201
ALON, A4, uncoated 1.2+ 01 0.12£ 001 24
ALON, A4, coating D 15801
Coming 9754, Cl, uncoated 0.7
Coming 9754, C1, coating O 0.16 £ 0.01
Corming 9754, C4, uncoated 05
_Coming 9754, C4, coating D 0.17 + .01

® Messured with 3 Cobleniz sphere collecting all light ietween 1.5 end 70 degroes from the ncideat ditechion
(Rl §). Exch is an avenge for seversl painti in the specimen.

b Derived from & pration of the hudirections! i distntx function between 1.5 and 70 degrees lrom the *
ident diroction in the forward bemizphere (Relecence 9).

CAvetage for 18 unused domes d in 1978 (Reli 8) No of polyerysathine Mgl wene made i
the present work.

dSm;Ic orystal and mosaic crysial {polycrysialline malenial with millimelerdo-centimeior-uzed orynait) MgFy were nat
used an the erotion expesunents in the present work.
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Optical scatter was measured prior to, but not after, erosion tests. Past experience
with rain erosion indicates that scatter increases significantly only at the isolated, damaged
impact sites (Reference 10). Because rain erosion damage was very light in the present
experiments, we anticipated no change in the optical scatter. In sand erosion tests, where
the surface is uniformly and significantly "sand blasted," scatter increases substantially.
This scatter is partly measured by the decrease in transmittance, which is reported later in
this document.

SAND EROSION

Sand erosion experiments were performed by PDA Engineering, Costa Mesa, Calif.
Sand with a density near 2.75g/cm3 (measured by liquid displacement), obtained from
Whitehead Brothers Co., Florham Park, N.J., was sieved to obtain particles in the size
ranges of 149 to 177 um and 0 to 38 um. Sand from a screw feeder system was
accelerated by a 6-mm-diameter compressed-air jet and directed at an impact angle of 90
degrees onto a flat specimen holder that could hold as inany as
16 25-mm-diameter samples (Figure 5). Sand mass flow rate and veiosity were esiablished
by prior calibration. The square specimen holder was rastered in a uniform manne: so its
full 310-cm? area was exposed to the jet twice in 2 minutes. Exposure was measured in
terms of milligrams of sand per cm? of sample area. After a mild initial exposure to 1
mg/cm?, successive loadings were chosen to produce significant damage.

NOZZLE

TEST

S
4" SPECIMEN

DUST JET
FIGURE 5. Test Configuration for Sand Erosion Experiments,

A speed of 77 m/s (150 knots) was chosen for relatively large particles (149 to
177 um) to simulate the environment of an aircraft during takeoff and landing. A speed of
206 my/s (406 knots) was chosen for small particles (<38 pimy) to simulate aircraft cruising
conditions. Seven samples (Table 3) were exposed simultaneously to the low-speed
congitions. and seven samples (Table 4) were exposed simultaneously to the high-speed
conditions.
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The average IR transmission in the wavelength range 2.0 to 2.5 pm and 2.5 to 3.7 pm
was recorded after each exposure. Figures 6 and 7 show transmission resulting from the
14 samples designated in Tables 3 and 4, respectively. A 200X optical micrograph
(Figures 8 through 10) was also taken after each exposure, using bright-field, reflected
illumination. Corning 9754 glass was not included in the sand erosion tests.

TABLE 3. Sand Erosion by 149- to 77-um-Diameter Particles
at 77 m/s at 90-Degree Incidence.

Percent Transmittance Averaged from 2.5 to 3.7 um Wavelength

*Cumulative ALON, | ALON, | ALON, | spinel, | Spinel, | Spinel,
sand load, pin pinel pine

2 uncoaied
mg/em

coati ;O | coatingD | uncoated [ coating O | coating D
No. 12 No. 2 No. 4 No. 12 No. 1 No. 4

0 8238  78.04 89.74 86.58 78.64 91.28
1 . 82.61 71.94 89.65 86.78 78.72 91.29
4 82.61 71.92 89.64 86.70 78.55 9121
10 82.79 nn 89.49 86.63 78.35 90.96
30 82.62 76,97 89.13 86.68 71.78 90.53
60 82.53 76.02 88.88 86.50 77.02 89,71
150 8246 74.53 LYAG! 86.62 75.42 8841
300 82.37 7409 86.13 86.46 7437 86.89

Percent Transmittance Averaged from 2.0 to 2.5 um Wavelength

81.08 82.15 88.16 84.01 81.60
81.30 82.06 87.98 84.07 81.48
81.38 82.00 88.07 84.05 8143
81.31 81.58 87.93 84.10 81.05
81.19 80.33 81.57 839 79.88
81.21 18.59 87.02 83.96 78.59
8L16 7541 85.57 83.97 75.59
81.00 73.09 83.69 8373 nn
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TABLE 4. Sand Erosion by <38-um-Diameter Particles
at 206 m/s at 90-Degree Incidence,

Cumulative

Percent Transmittance Averaged from 2.5 to 3.7 um Wavelength

o load MgFy, ALON, AI'.ON. ALPN. Spinel, Spi.nel. Spi.nel,
o g/cm2 * uncoated | wncoated | coating O | coatingD | wncoated | coatingO | coating D
No. 3 No. 11 No. 1 No. 3 No. 11 No. 2 No. 3
0 87.67 79.34 76.713 84.88 82.69 81.93 88.70
1 8747 79.43 75.16 8430 82.60 79.4 87.56
2 86.12 79.70 73.99 84.09 82.88 18.67 86.45
4 86.29 79.74 7292 83.30 82.98 7157 8547
8 84.47 71.32 79.76 76.58 82.10
30 79.55 82.77
50 79.43 82.84
100 79.38 82.70
Percent Transmittance Averaged from 2.0 to 2.5 wm Wavelength
0 83.90 77.84 80.92 83.17 80.28 81.93 88.70
1 82.93 77.82 827 8232 79.82 79.%4 87.56
2 8L 77.81 75.76 81.51 79.83 18.67 86.45
4 8139 78.01 71313 80.57 80.22 71.57 8547
8 79.02 69.88 76.86 76.58 82.10
30 1793 80.04
50 7790 80.06
100 77.85 7998

11
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Both sand erosion environments gave qualitatively similar results:

1. Uncoated spinel and ALON showed no loss of IR transmission up to the most
severe conditions encountered (Figures 6 and 7). The ALON results are consistent
with previous work (Reference 11) in which ALON showed no loss of transmission at
wavelengths of 1.0, 2.0, or 3.0 pm when impacted by 53- to 74-um sand particles at
76 m/s up to a cumulative loading of 250 mg/cm2. There was a 1.6%T loss at
0.350 um wavelength in the previous work.

2. Even though uncoated spinel and ALON exhibited no loss of IR transmission
in these experiments, Figure 8 shows that both materials do suffer some impact damage
at high sand loading. Spinel suffers less damage than ALON.

3. Both antireflection coatings were readily eroded in both environments, with
coating D showing less transmission loss than coating O (Figures 6 and 7).

4. Uncoated MgF7 was also readily eroded. Uncoated MgF showed more
rapid transmission loss than coated ALON and spinel in the takeoff/landing
environment (Figure 6) and was comparable to the coated samples in the cruising
environment (Figure 7).

RAIN EROSION

Rain erosion experiments were carried out at the Wright-Patterson/University of
Dayton Research Institute (Ohio) whirling arm facility. Samples at the ends of a propeller
blade were spun at 210 mys inside a chamber in which 2-mm-diameter water drops falling
at a rainfall rate of 25.4 mmv/h were impacted at normal incidence (90 degrees). After an
exposure of 2.5 to 5 minutes the samples were removed, and their condition was observed
under a microscope. Specimens were run one time or more until microscopic damage was
noticeable. At the conclusion of the experiment, an inexperienced observer would consider
these samples to be e-  1tially undamaged; however, trained personnel can discern very
slight damage. If we . cre to repeat these experiments, all samples would be run for longer
times (20 minutes) to create more distinct damage.

Results of the rain crosion tests are shown in Table 5 and Figu.es 11 through 13, The
general observations follow:

1. Uncoated ALON is the most durable material, being nearly undamaged
(Figure 11). This result is consistent with previous work (Reference 10) in which ALON
was undamaged after 40 minutes of exposure under the same conditions at the same test
facility.

2. MgF7 and uncoated spinel performed worse than ALON and better than the
coated materials and the Corning 9754 glass. There is no clear distinction between MgF,
and spinel. One MgF2 sample broke during a test, perhaps because the MgFs samples
were the thinnest of all the specimens (3.4 mm) or because there were significant polishing
scratches (straight lines in Figure 11). Both materials showed slight impact damage
(Figure 11). The structure at the impact site in spinel in Figure 11 is probably related to

17
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(Figure 11). The structure at the impact site in spinel in Figure 11 is probably related to
grain structure. In previous work, uncoated spinel from Coors (the predecessor to Alpha
Optical) was also more heavily damaged rhan uncoated ALON under the same conditions
(Reference 10).

3. Antireflection coatings on ALON delaminate upon raindrop impact. Coating D
adheres deiter than coating O (Figure 12).

4. Antireflection coating D on spinel also delaminated upon raindrop impact
(Figure 12). Coating O on spinel in Figure 12 did not appear to delaminate, even though
the underlying spinel was damaged. Unfortunately, this coating had no optical
-antireflection performance in Figure 4. We do not know how well properly applied coating
O on spinel would perform under water-drop impact.

5. Coming 9754 germanate glass exhibited the worst performance. Damage shown
in Figure 13 is in the underlying glass, with no evidence of delamination of either coating.
Corning 9754 glass is too easily eroded to be considered for missile dome applications.

18
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TABLE 5. Rain Erosion by 2-mm-Diameter Drops at 210 m/s

at 90-Degree Incidence at 25.4 mmyvh Rainfall Rate.
Sample Time, minutes Description of damage
MgF2 No. 1 2.5 Subsurface ring fractures/(erosion damage)
MgF2 No. 2 2.5 Sample broke; subsurface ring
fracture/pitting/cratering/internal
fracture/(erosion damage)
ALON No. A9 5 Very slight pitting
10 Pitting/(erosion damage)
ALON No. A10 5 Very slight pitting
10 Pitting/(erosion damage)
Spinel No. 9 5 Piting/slight cratering/(erosion damaga)
Spinel No. S10 N Pitting/slight cratering/(crosion damage)
ALON No. AS, coating O 5 No apparent damage
10 Slight pitting/locatized coating removal/{erosion
damage)
ALON No. A6, coating O 5 No apparent damage '
10 Slight pitting/localized coating removal/(erosion
amage)
ALON No. A7, coating D 5 Very slight pitting
10 Slightly increased pitting/localized coating
removalf(erosion damage)
ALON No. A8, coating D M Vory slight pitting
10 Slight increased pitting/lucalized coating
romoval/(erosion damage)
Spinol No, 83, coating O M Slight pitting
10 Piting/(crosion damage)
Spinel No. $6, coating O S Slight pitting
10 Pitting/(crosion damage)
Spinel No. §7, coating D S Piuing/localized coating removali{erosion damage)
Spincl No. S8, coating D ] Pitting/localized coating removal/(crosion damage)
Corning 9754 No. CS§ S Subsurface ring fracture/surfoce microcracks/
pitting/cratering/(crosion damage)
Coming 9754 No. C6 ) Subsurface ring fracture/surface microcracks/
pitting/craiering/(erosion damage)
Corning 9754 No. C2, 5 Subsurface ring fracture/surface microcnacks/
coating O pilting/cratering/(erosion damage)
Carning 9754 No. C3, M Subsurface ring {racture/surface microcracks/
coaling D pitting/cratering/{crosion damage)
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